Constraining the 6.05 MeV 0^+ and 6.13 MeV 3^- cascade transitions in the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction using the asymptotic normalization coefficients

M.L. Avila, G.V. Rogachev, E. Koshchiy, L.T. Baby, J. Belarge, K.W. Kemper, A.N. Kuchera, A.M. Mukhamedzhanov, D. Santiago-Gonzalez, and E. Uberseder

The ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction plays a fundamental role in astrophysics and needs to be known with accuracy better than 10%. Cascade γ transitions through the excited states of ${}^{16}O$ are contributing to the uncertainty. We constrained the contribution of the 0⁺(6.05 MeV) and 3⁻(6.13 MeV) cascade transitions by measuring the asymptotic normalization coefficients for these states using the α -transfer reaction ${}^{6}Li({}^{12}C,d){}^{16}O$ at sub-Coulomb energy. The contribution of the 0⁺ and 3⁻ cascade transitions at 300 keV is found to be 1.96±0.3 and 0.12±0.04 keVb for destructive interference of the direct and resonance capture 4.36±0.45 and 1.44±0.12 keVb for constructive interference, respectively. The combined contribution of the 0⁺ and 3⁻ cascade transitions to the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction cross section at 300 keV does not exceed 4%. Significant uncertainties have been dramatically reduced.

The work has been published in Phys. Rev. Lett. 114, 071101 (2015).